Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165.749
Filtrar
1.
AAPS J ; 26(3): 40, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570383

RESUMEN

In a lyophilized protein/disaccharide system, the ability of the disaccharide to form a homogeneous mixture with the protein and to slow the protein mobility dictates the stabilization potential of the formulation. Human serum albumin was lyophilized with sucrose or trehalose in histidine, phosphate, or citrate buffer. 1H T1 relaxation times were measured by solid-state NMR spectroscopy and were used to assess the homogeneity and mobility of the samples after zero, six, and twelve months at different temperatures. The mobility of the samples decreased after 6 and 12 months storage at elevated temperatures, consistent with structural relaxation of the amorphous disaccharide matrix. Formulations with sucrose had lower mobility and greater stability than formulations with trehalose.


Asunto(s)
Sacarosa , Trehalosa , Humanos , Trehalosa/química , Temperatura , Albúmina Sérica Humana , Estabilidad de Medicamentos , Disacáridos , Espectroscopía de Resonancia Magnética , Liofilización
2.
Methods Mol Biol ; 2797: 115-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38570456

RESUMEN

Fragment-based screening by ligand-observed 1D NMR and binding interface mapping by protein-observed 2D NMR are popular methods used in drug discovery. These methods allow researchers to detect compound binding over a wide range of affinities and offer a simultaneous assessment of solubility, purity, and chemical formula accuracy of the target compounds and the 15N-labeled protein when examined by 1D and 2D NMR, respectively. These methods can be applied for screening fragment binding to the active (GMPPNP-bound) and inactive (GDP-bound) states of oncogenic KRAS mutants.


Asunto(s)
Descubrimiento de Drogas , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/genética , Ligandos , Espectroscopía de Resonancia Magnética , Proteínas , Unión Proteica , Sitios de Unión
3.
Methods Mol Biol ; 2797: 237-252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38570464

RESUMEN

The activation level of RAS can be determined by GTP hydrolysis rate (khy) and GDP-GTP exchange rates (kex). Either impaired GTP hydrolysis or enhanced GDP-GTP exchange causes the aberrant activation of RAS in oncogenic mutants. Therefore, it is important to quantify the khy and kex for understanding the mechanisms of RAS oncogenesis and drug development. Conventional methods have individually measured the kex and khy of RAS. However, within the intracellular environment, GTP hydrolysis and GDP-GTP exchange reactions occur simultaneously under conditions where GTP concentration is kept constant. In addition, the intracellular activity of RAS is influenced by endogenous regulatory proteins, such as RAS GTPase activating proteins (GAPs) and the guanine-nucleotide exchange factors (GEFs). Here, we describe the in vitro and in-cell NMR methods to estimate the khy and kex simultaneously by measuring the time-dependent changes of the fraction of GTP-bound ratio under the condition of constant GTP concentration.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Proteínas Activadoras de ras GTPasa , Guanosina Trifosfato/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Hidrólisis , Factores de Intercambio de Guanina Nucleótido/metabolismo , Espectroscopía de Resonancia Magnética , Guanosina Difosfato/metabolismo
4.
Methods Mol Biol ; 2797: 195-209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38570461

RESUMEN

Knowledge of how effectors interact with RAS GTPases is key to understanding how these switch-like proteins function in cells. Effectors bind specifically to GTP-loaded RAS using RAS association (RA) or RAS binding domains (RBDs) that show wide-ranging affinities and thermodynamic characteristics. Both normal development and RAS-induced tumorigenesis depend on multiple distinct effector proteins that are frequently co-expressed and co-localized, suggesting an antagonistic nature to signaling whereby multiple proteins compete for a limited pool of activated GTPase. NMR spectroscopy offers a powerful approach to multiplex effectors and/or regulatory enzymes and quantifies their interaction with RAS, expanding our biophysical and systems-level understanding of RAS signaling in a more integrated and physiologically relevant setting. Here we describe a method to directly quantitate GTPase binding to competing effectors, using wild-type KRAS complex with ARAF and PLCε1 as a model. Unlabeled RBD/RA domains are added simultaneously to isotopically labeled RAS, and peak intensities at chemical shifts characteristic of individually bound domains provide quantitation. Similar competition-based assays can be run with small molecule interactors, GEF/GAP domains, or regulatory enzymes that drive posttranslational modifications. Such efforts bring in vitro interaction experiments in line with more complex cellular environments.


Asunto(s)
Transducción de Señal , Proteínas ras , Proteínas ras/metabolismo , Proteínas/metabolismo , Espectroscopía de Resonancia Magnética , Unión Proteica
5.
BMC Cardiovasc Disord ; 24(1): 203, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594610

RESUMEN

BACKGROUND: In patients with hypertrophic cardiomyopathy (HCM), ischemic myocardial fibrosis assessed by late gadolinium enhancement (I-LGE) using cardiovascular magnetic resonance (CMR) have been reported. However, the clinical significance of I-LGE has not been completely understood. We aim to evaluate the I-LGE differ phenotypically from HCM without LGE or nonischemic myocardial fibrosis assessed by late gadolinium enhancement (NI-LGE) in the left ventricle (LV). METHODS: The patients with HCM whom was underwent CMR were enrolled, using cine cardiac magnetic resonance to evaluate LV function and LGE to detect the myocardial fibrosis. Three groups were assorted: 1) HCM without LGE; 2) HCM with LGE involved the subendocardial layer was defined as I-LGE; 3) HCM with LGE not involved the subendocardial layer was defined as NI-LGE. RESULTS: We enrolled 122 patients with HCM in the present study. LGE was detected in 58 of 122 (48%) patients with HCM, and 22 (18%) of patients reported I-LGE. HCM with I-LGE had increased higher left ventricular mass index (LVMI) (P < 0.0001) than HCM with NI-LGE or without LGE. In addition, HCM with I-LGE had a larger LV end- systolic volume (P = 0.045), lower LV ejection fraction (LVEF) (P = 0.026), higher LV myocardial mass (P < 0.001) and thicker LV wall (P < 0.001) more than HCM without LGE alone. The I-LGE were significantly associated with LVEF (OR: 0.961; P = 0.016), LV mass (OR: 1.028; P < 0.001), and maximal end-diastolic LVWT (OR: 1.567; P < 0.001). On multivariate analysis, LVEF (OR: 0.948; P = 0.013) and maximal end-diastolic LVWT (OR: 1.548; P = 0.001) were associated with higher risk for I-LGE compared to HCM without LGE. Noticeably, the maximal end-diastolic LVWT (OR: 1.316; P = 0.011) was the only associated with NI-LGE compared to HCM without LGE. CONCLUSIONS: I-LGE is not uncommon in patients with HCM. HCM with I-LGE was associated with significant LV hypertrophy, extensive LGE and poor LV ejection fraction. We should consider focal ischemic myocardial fibrosis when applying LGE to risk stratification for HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Medios de Contraste , Humanos , Gadolinio , Imagen por Resonancia Cinemagnética , Cardiomiopatía Hipertrófica/diagnóstico , Miocardio/patología , Fibrosis , Espectroscopía de Resonancia Magnética
6.
Anal Chem ; 96(15): 5763-5770, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564366

RESUMEN

Library matching by comparing carbon-13 nuclear magnetic resonance (13C NMR) spectra with spectral data in the library is a crucial method for compound identification. In our previous paper, we introduced a deep contrastive learning system called CReSS, which used a library that contained more structures. However, CReSS has two limitations: there were no unknown structures in the library, and a redundant library reduces the structure-elucidation accuracy. Herein, we replaced the oversize traditional libraries with focused libraries containing a small number of molecules. A previously generative model, CMGNet, was used to generate focused libraries for CReSS. The combined model achieved a Top-10 accuracy of 54.03% when tested on 6,471 13C NMR spectra. In comparison, CReSS with a random reference structure library achieved an accuracy of only 9.17%. Furthermore, to expand the advantages of the focused libraries, we proposed SAmpRNN, which is a recurrent neural network (RNN). With the large focused library amplified by SAmpRNN, the structure-identification accuracy of the model increased in 70.0% of the 30 random example cases. In general, cross-modal retrieval between 13C NMR spectra and structures based on focused libraries (CFLS) achieved high accuracy and provided more accurate candidate structures than traditional libraries for compound identification.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
7.
Zhongguo Zhong Yao Za Zhi ; 49(3): 728-734, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621876

RESUMEN

Mesona chinensis is a common medicinal and edible plant in the Lingnan region of China, which has extensive pharmacological activity. However, the study of its chemical constituents is not sufficient. In this study, a variety of modern chromatographic separation techniques were used to isolate two compounds from 95% ethanol extract of the grass parts of M. chinensis. Their absolute configurations were determined by ultraviolet spectroscopy(UV), infrared spectroscopy(IR), high resolution mass spectrometry(HR-ESI-MS), 1D and 2D nuclear magnetic resonance(1D NMR and 2D NMR), and single-crystal X-ray diffraction(SC-XRD). Specifically, they were two new benzoyl-sesquiterpenes and named mesonanol A and mesonanol B, respectively. The results of the pharmacological activity evaluation showed that neither of the two new compounds showed obvious antiviral and anti-inflammatory activities.


Asunto(s)
Lamiaceae , Sesquiterpenos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Espectrofotometría Infrarroja , Estructura Molecular
8.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1549-1557, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621938

RESUMEN

The dichloromethane fraction of Kadsura heteroclita roots was separated and purified by chromatographic techniques(e.g., silica gel, Sephadex LH-20, ODS, MCI column chromatography) and semi-preparative HPLC. Twenty compounds were isolated from K. heteroclita, and their structures were identified by NMR, MS, UV, and X-ray single crystal diffraction techniques. Twenty compounds were isolated from K. heteroclita, which were identified as xuetongdilactone G(1), mallomacrostin C(2), 3,4-seco(24Z)-cychmrt-4(28),24-diene-3,26-dioic acid 3-methyl ester(3), nigranoic acid(4), methyl ester schizanlactone E(5), schisandronic acid(6), heteroclic acid(7), wogonin(8),(2R,3R)-4'-O-methyldihydroquercetin(9), 15,16-bisnor-13-oxo-8(17),11E-labdadien-19-oic acid(10), stigmast-4-ene-6ß-ol-3-one(11), psoralen(12),(1R,2R,4R)-trihydroxy-p-menthane(13), homovanillyl alcohol(14), 2-(4-hydroxyphenyl)-ethanol(15), coniferaldehyde(16),(E)-7-(4-hydroxy-3-methoxyphenyl)-7-methylbut-8-en-9-one(17), acetovanillone(18), vanillic acid(19) and vanillin(20). Compound 1 is a new compound named xuetongdilactone G. Compounds 2-3 and 8-20 are isolated from K. heteroclita for the first time.


Asunto(s)
Kadsura , Kadsura/química , Espectroscopía de Resonancia Magnética , Raíces de Plantas/química , Ésteres/análisis
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124224, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574611

RESUMEN

Overuse of doxycycline (DOXY) can cause serious problems to human health, environment and food quality. So, it is essential to develop a new sensing methodology that is both sensitive and selective for the quantitative detection of DOXY. In our current research, we synthesized a simple fluorescent probe 4,4'-bis(benzyloxy)-1,1'-biphenyl (BBP) for the highly selective detection of doxycycline by through fluorescence spectroscopy. The probe BBP displayed ultra-sensitivity towards doxycycline due to Forster resonance energy transfer (FRET). Fluorescence spectroscopy, density functional theory (DFT), 1H NMR titration, UV-Vis, and Job's plot were used to confirm the sensing mechanism. The charge transfer between the probe and analyte was further examined qualitatively by electron density differences (EDD) and quantitively by natural bond orbital (NBO) analyses. Whereas the non-covalent nature of probe BBP towards DOXY was verified by theoretical non-covalent interaction (NCI) analysis as along with Bader's quantum theory of atoms in molecules (QTAIM) analysis. Furthermore, probe BBP was also practically employed for the detection of doxycycline in fish samples, pharmaceutical wastewater and blood samples.


Asunto(s)
Doxiciclina , Colorantes Fluorescentes , Animales , Humanos , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Transferencia Resonante de Energía de Fluorescencia , Espectroscopía de Resonancia Magnética
10.
Physiol Plant ; 176(2): e14270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566280

RESUMEN

The advancement of metabolomics has assisted in the identification of various bewildering characteristics of the biological system. Metabolomics is a standard approach, facilitating crucial aspects of system biology with absolute quantification of metabolites using minimum samples, based on liquid/gas chromatography, mass spectrometry and nuclear magnetic resonance. The metabolome profiling has narrowed the wide gaps of missing information and has enhanced the understanding of a wide spectrum of plant-environment interactions by highlighting the complex pathways regulating biochemical reactions and cellular physiology under a particular set of conditions. This high throughput technique also plays a prominent role in combined analyses of plant metabolomics and other omics datasets. Plant metabolomics has opened a wide paradigm of opportunities for developing stress-tolerant plants, ensuring better food quality and quantity. However, despite advantageous methods and databases, the technique has a few limitations, such as ineffective 3D capturing of metabolites, low comprehensiveness, and lack of cell-based sampling. In the future, an expansion of plant-pathogen and plant-pest response towards the metabolite architecture is necessary to understand the intricacies of plant defence against invaders, elucidation of metabolic pathway operational during defence and developing a direct correlation between metabolites and biotic stresses. Our aim is to provide an overview of metabolomics and its utilities for the identification of biomarkers or key metabolites associated with biotic stress, devising improved diagnostic methods to efficiently assess pest and pathogen attack and generating improved crop varieties with the help of combined application of analytical and molecular tools.


Asunto(s)
Metaboloma , Metabolómica , Metabolómica/métodos , Metaboloma/fisiología , Espectrometría de Masas , Espectroscopía de Resonancia Magnética , Plantas/metabolismo
11.
Cardiovasc Diabetol ; 23(1): 120, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566090

RESUMEN

BACKGROUND: Obesity is often associated with multiple comorbidities. However, whether obese subjects with hyperlipidemia in the absence of other complications have worse cardiac indices than metabolically healthy obese subjects is unclear. Therefore, we aimed to determine the effect of hyperlipidemia on subclinical left ventricular (LV) function in obesity and to evaluate the association of cardiac parameters with body fat distribution. MATERIALS AND METHODS: Ninety-two adults were recruited and divided into 3 groups: obesity with hyperlipidemia (n = 24, 14 males), obesity without hyperlipidemia (n = 25, 13 males), and c ntrols (n = 43, 25 males). LV strain parameters (peak strain (PS), peak diastolic strain rate (PDSR), peak systolic strain rate) derived from cardiovascular magnetic resonance tissue tracking were measured and compared. Dual-energy X-ray absorptiometer was used to measure body fat distribution. Correlations of hyperlipidemia and body fat distribution with LV strain were assessed by multivariable linear regression. RESULTS: Obese individuals with preserved LV ejection fraction showed lower global LV longitudinal, circumferential, and radial PS and longitudinal and circumferential PDSR than controls (all P < 0.05). Among obese patients, those with hyperlipidemia had lower longitudinal PS and PDSR and circumferential PDSR than those without hyperlipidemia (- 12.8 ± 2.9% vs. - 14.2 ± 2.7%, 0.8 ± 0.1 s-1 vs. 0.9 ± 0.3 s-1, 1.2 ± 0.2 s-1 vs. 1.4 ± 0.2 s-1; all P < 0.05). Multivariable linear regression demonstrated that hyperlipidemia was independently associated with circumferential PDSR (ß = - 0.477, P < 0.05) in obesity after controlling for growth differences, other cardiovascular risk factors, and central fat distribution. In addition, android fat had an independently negative relationship with longitudinal and radial PS (ß = - 0.486 and ß = - 0.408, respectively; all P < 0.05); and visceral fat was negatively associated with longitudinal PDSR (ß = - 0.563, P < 0.05). Differently, gynoid fat was positively correlated with circumferential PS and PDSR and radial PDSR (ß = 0.490, ß = 0.481, and ß = 0.413, respectively; all P < 0.05). CONCLUSION: Hyperlipidemia is independently associated with subclinical LV diastolic dysfunction in obesity. Central fat distribution (android and visceral fat) has a negative association, while peripheral fat distribution (gynoid fat) has a positive association on subclinical LV function. These results suggest that appropriate management of hyperlipidemia may be beneficial for obese patients, and that the differentiation of fat distribution in different regions may facilitate the precise management of obese patients. Clinical trials registration Effect of lifestyle intervention on metabolism of obese patients based on smart phone software (ChiCTR1900026476).


Asunto(s)
Hiperlipidemias , Disfunción Ventricular Izquierda , Masculino , Adulto , Humanos , Función Ventricular Izquierda , Hiperlipidemias/diagnóstico , Hiperlipidemias/epidemiología , Obesidad/complicaciones , Obesidad/diagnóstico , Obesidad/epidemiología , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/etiología , Volumen Sistólico , Distribución de la Grasa Corporal , Espectroscopía de Resonancia Magnética/efectos adversos
12.
J Nanobiotechnology ; 22(1): 151, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575943

RESUMEN

BACKGROUND: As the lethal bone tumor, osteosarcoma often frequently occurs in children and adolescents with locally destructive and high metastasis. Distinctive kinds of nanoplatform with high therapeutical effect and precise diagnosis for osteosarcoma are urgently required. Multimodal optical imaging and programmed treatment, including synergistic photothermal-chemodynamic therapy (PTT-CDT) elicits immunogenetic cell death (ICD) is a promising strategy that possesses high bio-imaging sensitivity for accurate osteosarcoma delineating as well as appreciable therapeutic efficacy with ignorable side-effects. METHODS AND RESULTS: In this study, mesoporous Cu and Ce based oxide nanoplatform with Arg-Gly-Asp (RGD) anchoring is designed and successfully constructed. After loading with indocyanine green, this nanoplatform can be utilized for precisely targeting and efficaciously ablating against osteosarcoma via PTT boosted CDT and the closely following ICD stimulation both in vitro and in vivo. Besides, it provides off-peak fluorescence bio-imaging in the second window of near-infrared region (NIR II, 1000-1700 nm) and Magnetic resonance signal, serves as the dual-mode contrast agents for osteosarcoma tissue discrimination. CONCLUSION: Tumor targeted Cu&Ce based mesoporous nanoplatform permits efficient osteosarcoma suppression and dual-mode bio-imaging that opens new possibility for effectively diagnosing and inhibiting the clinical malignant osteosarcoma.


Asunto(s)
Neoplasias Óseas , Nanopartículas , Neoplasias , Osteosarcoma , Niño , Humanos , Adolescente , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/terapia , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/tratamiento farmacológico , Inmunoterapia , Línea Celular Tumoral , Fototerapia
13.
BMC Musculoskelet Disord ; 25(1): 264, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575985

RESUMEN

PURPOSE: To identify MRI-detected anatomical risk factors for non-contact anterior cruciate ligament (ACL) injuries across genders. METHODS: A retrospective analysis was performed on 141 ACL-reconstructed patients (35 females, 106 males) and 142 controls (37 females, 105 males) from January 2020 to April 2022. Inclusion criteria were primary non-contact ACL injuries. The tibial plateau slope, lateral femoral condyle index, Insall-Salvati index, and patellar tendon angle were measured, using binary logistic regression for gender-specific risk evaluation. RESULTS: Increased lateral tibial plateau slope, reduced intercondylar notch width index, lateral femoral condyle index, and patellar tendon angle correlated with ACL injuries in both genders. The Insall-Salvati index was a significant risk factor in females but not in males. CONCLUSION: This study identifies the lateral tibial plateau slope, notch width index, lateral femoral condyle index, and patellar tendon angle at near-extension as risk factors for ACL injuries in both genders, with the Insall-Salvati index also implicated in females.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Humanos , Masculino , Femenino , Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen , Lesiones del Ligamento Cruzado Anterior/etiología , Estudios Retrospectivos , Factores Sexuales , Articulación de la Rodilla/diagnóstico por imagen , Tibia , Imagen por Resonancia Magnética/efectos adversos , Factores de Riesgo , Espectroscopía de Resonancia Magnética
14.
Radiol Imaging Cancer ; 6(3): e230101, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38578207

RESUMEN

MR spectroscopy (MRS) is a noninvasive imaging method enabling chemical and molecular profiling of tissues in a localized, multiplexed, and nonionizing manner. As metabolic reprogramming is a hallmark of cancer, MRS provides valuable metabolic and molecular information for cancer diagnosis, prognosis, treatment monitoring, and patient management. This review provides an update on the use of MRS for clinical cancer management. The first section includes an overview of the principles of MRS, current methods, and conventional metabolites of interest. The remainder of the review is focused on three key areas: advances in instrumentation, specifically ultrahigh-field-strength MRI scanners and hybrid systems; emerging methods for acquisition, including deuterium imaging, hyperpolarized carbon 13 MRI and MRS, chemical exchange saturation transfer, diffusion-weighted MRS, MR fingerprinting, and fast acquisition; and analysis aided by artificial intelligence. The review concludes with future recommendations to facilitate routine use of MRS in cancer management. Keywords: MR Spectroscopy, Spectroscopic Imaging, Molecular Imaging in Oncology, Metabolic Reprogramming, Clinical Cancer Management © RSNA, 2024.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia
15.
Molecules ; 29(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38611904

RESUMEN

In recent years, caffeic acid and its derivatives have received increasing attention due to their obvious physiological activities and wide distribution in nature. In this paper, to clarify the status of research on plant-derived caffeic acid and its derivatives, nuclear magnetic resonance spectroscopy data and possible biosynthetic pathways of these compounds were collected from scientific databases (SciFinder, PubMed and China Knowledge). According to different types of substituents, 17 caffeic acid and its derivatives can be divided into the following classes: caffeoyl ester derivatives, caffeyltartaric acid, caffeic acid amide derivatives, caffeoyl shikimic acid, caffeoyl quinic acid, caffeoyl danshens and caffeoyl glycoside. Generalization of their 13C-NMR and 1H-NMR data revealed that acylation with caffeic acid to form esters involves acylation shifts, which increase the chemical shift values of the corresponding carbons and decrease the chemical shift values of the corresponding carbons of caffeoyl. Once the hydroxyl group is ester, the hydrogen signal connected to the same carbon shifts to the low field (1.1~1.6). The biosynthetic pathways were summarized, and it was found that caffeic acid and its derivatives are first synthesized in plants through the shikimic acid pathway, in which phenylalanine is deaminated to cinnamic acid and then transformed into caffeic acid and its derivatives. The purpose of this review is to provide a reference for further research on the rapid structural identification and biofabrication of caffeic acid and its derivatives.


Asunto(s)
Vías Biosintéticas , Ácidos Cafeicos , Ácido Shikímico , Carbono , Ésteres , Espectroscopía de Resonancia Magnética
16.
Actas Esp Psiquiatr ; 52(2): 161-171, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622011

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the leading cause of dementia, resulting in impairments in memory, cognition, decision-making, and social skills. Thus, accurate preclinical diagnosis of Alzheimer's disease is paramount. The identification of biomarkers for Alzheimer's disease through magnetic resonance spectroscopy (MRS) represents a novel adjunctive diagnostic approach. OBJECTIVE: This study conducted a meta-analysis of the diagnostic results of this technology to explore its feasibility and accuracy. METHODS: PubMed, Cochrane Library, EMBASE, and Web of Science databases were searched without restrictions, with the search period extending up to July 31, 2022. The search strategy employed a combination of subject headings and keywords. All retrieved documents underwent screening by two researchers, who selected them for meta-analysis. The included literature was analyzed using Review Manager 5.4 software, with corresponding bias maps, forest plots, and summary receiver operating characteristic (SROC) curves generated and analyzed. RESULTS: A total of 344 articles were retrieved initially, with 11 articles meeting the criteria for inclusion in the analysis. The analysis encompassed data from approximately 1766 patients. In the forest plot, both sensitivity (95% CI) and specificity (95% CI) approached 1. Examining the true positive rate, false positive rate, true negative rate, and false negative rate, all studies on the summary receiver operating characteristic (SROC) curve clustered in the upper left quadrant, suggesting a very high accuracy of biomarkers detected by MRS for diagnosing Alzheimer's disease. CONCLUSION: The detection of biomarkers by MRS demonstrates feasibility and high accuracy in diagnosing AD. This technology holds promise for widespread adoption in the clinical diagnosis of AD in the future.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Humanos , Enfermedad de Alzheimer/diagnóstico , Estudios de Factibilidad , Espectroscopía de Resonancia Magnética , Biomarcadores , Sensibilidad y Especificidad
17.
Biochem Soc Trans ; 52(2): 719-731, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563485

RESUMEN

The aggregation of proteins into amyloid-like fibrils is seen in many neurodegenerative diseases. Recent years have seen much progress in our understanding of these misfolded protein inclusions, thanks to advances in techniques such as solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryo-EM). However, multiple repeat-expansion-related disorders have presented special challenges to structural elucidation. This review discusses the special role of ssNMR analysis in the study of protein aggregates associated with CAG repeat expansion disorders. In these diseases, the misfolding and aggregation affect mutant proteins with expanded polyglutamine segments. The most common disorder, Huntington's disease (HD), is connected to the mutation of the huntingtin protein. Since the discovery of the genetic causes for HD in the 1990s, steady progress in our understanding of the role of protein aggregation has depended on the integrative and interdisciplinary use of multiple types of structural techniques. The heterogeneous and dynamic features of polyQ protein fibrils, and in particular those formed by huntingtin N-terminal fragments, have made these aggregates into challenging targets for structural analysis. ssNMR has offered unique insights into many aspects of these amyloid-like aggregates. These include the atomic-level structure of the polyglutamine core, but also measurements of dynamics and solvent accessibility of the non-core flanking domains of these fibrils' fuzzy coats. The obtained structural insights shed new light on pathogenic mechanisms behind this and other protein misfolding diseases.


Asunto(s)
Péptidos , Péptidos/química , Péptidos/metabolismo , Humanos , Amiloide/química , Amiloide/metabolismo , Agregado de Proteínas , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Pliegue de Proteína , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos
18.
J Phys Chem B ; 128(15): 3527-3537, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38568422

RESUMEN

Despite the limitations posed by poor sensitivity, studies have reported the unique advantages of 17O based NMR spectroscopy to study systems existing in liquid, solid, or semisolid states. 17O NMR studies have exploited the remarkable sensitivity of quadrupole coupling and chemical shift anisotropy tensors to the local environment in the characterization of a variety of intra- and intermolecular interactions and motion. Recent studies have considerably expanded the use of 17O NMR to study dynamic intermolecular interactions associated with some of the challenging biological systems under magic angle spinning (MAS) and aligned conditions. The very fast relaxing nature of 17O has been well utilized in cellular and in vivo MRS (magnetic resonance spectroscopy) and MRI (magnetic resonance imaging) applications. The main focus of this Review is to highlight the new developments in the biological solids with a detailed discussion for a few selected examples including membrane proteins and nanodiscs. In addition to the unique benefits and limitations, the remaining challenges to overcome, and the impacts of higher magnetic fields and sensitivity enhancement techniques are discussed.


Asunto(s)
Campos Magnéticos , Proteínas de la Membrana , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química , Anisotropía , Lípidos
19.
Clin Res Cardiol ; 113(5): 781-789, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38619578

RESUMEN

BACKGROUND: Cardiac magnetic resonance (CMR) provides information on morpho-functional abnormalities and myocardial tissue characterisation. Appropriate indications for CMR in athletes are uncertain. OBJECTIVE: To analyse the CMR performed at our Institute to evaluate variables associated with pathologic findings in a large cohort of athletes presenting with different clinical conditions. METHODS: All the CMR performed at our Institute in athletes aged > 14 years were recruited. CMR indications were investigated. CMR was categorised as "positive" or "negative" based on the presence of morphological and/or functional abnormalities and/or the presence of late gadolinium enhancement (excluding the right ventricular insertion point), fat infiltration, or oedema. Variables associated with "positive" CMR were explored. RESULTS: A total of 503 CMR were included in the analysis. "Negative" and "positive" CMR were 61% and 39%, respectively. Uncommon ventricular arrhythmias (VAs) were the most frequent indications for CMR, but the proportion of positive results was low (37%), and only polymorphic ventricular patterns were associated with positive CMR (p = 0.006). T-wave inversion at 12-lead ECG, particularly on lateral and inferolateral leads, was associated with positive CMR in 34% of athletes (p = 0.05). Echocardiography abnormalities resulted in a large proportion (58%) of positive CMR, mostly cardiomyopathies. CONCLUSION: CMR is more efficient in identifying a pathologic cardiac substrate in athletes in case of VAs (i.e., polymorphic beats), abnormal ECG repolarisation (negative T-waves in inferolateral leads), and borderline echocardiographic findings (LV hypertrophy, mildly depressed LV function). On the other hand, CMR is associated with a large proportion of negative results. Therefore, a careful clinical selection is needed to indicate CMR in athletes appropriately.


Asunto(s)
Cardiología , Cardiomiopatías , Humanos , Medios de Contraste , Gadolinio , Arritmias Cardíacas , Atletas , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Cinemagnética/métodos , Valor Predictivo de las Pruebas
20.
J Texture Stud ; 55(2): e12834, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613328

RESUMEN

This study investigated the influence of substituting 60, 80, and 100% of the sugar in traditional cocoa hazelnut paste (control) formulation with inulin-stevia (90:10, w/w) mixture on textural and rheological characteristics, melting behavior, water activity (aw), particle size distribution (PSD), and color. Textural, rheological, melting properties, and color of samples were analyzed after 1, 2, and 3 months of storage at 11°C. Nuclear magnetic resonance (NMR) relaxometry experiments were also performed to understand the interaction of new ingredients with oil. Replacement of sugar with inulin-stevia gave darker color, reduced Casson yield stress, and changed the textural parameters and melting profile of the samples depending on the level but did not create a remarkable effect on PSD and Casson plastic viscosity. Increasing inulin-stevia content yielded lower aw and higher T2a values indicating decreased mobility of water. Complete removal of sugar caused low spreadability. The results showed that an 80% replacement level yielded a product with similar textural parameters and fat-melting mouth feeling compared to control sample. Cocoa hazelnut spreads prepared with inulin and stevia showed good textural stability during storage.


Asunto(s)
Cacao , Corylus , Stevia , Azúcares , Inulina , Tamaño de la Partícula , Agua , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...